RESEARCH ARTICLE


Greenhouse Gas Emission, Rainfall and Crop Production Over North-Western India



Vinay Kumar1, *, Sudip Jana2, Amit Bhardwaj3, R. Deepa4, Saroj Kumar Sahu5, P. K. Pradhan6, Sevinc A. Sirdas7
1 Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, TX-78412, USA
2 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3 Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL-32306, USA
4 Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL-32306, USA
5 P.G. Environmental Science, Dept. of Botany, Utkal University, Bhubaneswar, India
6 Department of Physics, Sri Venkateswara University, Tirupati-517 502, India
7 Department of Meteorological Engineering, Faculty of Aeronautics and Astronautics, Istanbul Technical University, Maslak 34469, Istanbul, Turkey


© 2018 Kumar et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this athor at the Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, TX-78412, USA; Tel: 13618252506; E-mails: vinay.kumar@tamucc.edu; neelubijnori@gmail.com


Abstract

Background:

This study is based on datasets acquired from multi sources e.g. rain-gauges, satellite, reanalysis and coupled model for the region of Northwestern India. The influence of rainfall on crop production is obvious and direct. With the climate change and global warming, greenhouse gases are also showing an adverse impact on crop production. Greenhouse gases (e.g. CO2, NO2 and CH4) have shown an increasing trend over Northwestern Indian region. In recent years, rainfall has also shown an increasing trend over Northwestern India, while the production of rice and maize are reducing over the region. From eight selected sites, over Northwestern India, where rice and maize productions have reduced by 40%, with an increase in CO2, NO2 and CH4 gas emission by 5% from 1998 to 2011.

Results:

The correlation from one year to another between rainfall, gas emission and crop production was not very robust throughout the study period, but seemed to be stronger for some years than others.

Conclusion:

Such trends and crop yield are attributed to rainfall, greenhouse gas emissions and to the climate variability.

Keywords: Greenhouse gases, CH4, Climate Variability, Emissions, Crop production, Rainfall.