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Abstract:

Introduction: This study compares the performance of machine-learning linear regression and random forest models
with the conventional correlation analysis in the prediction of the influence of soil moisture on radon exhalation and
indoor radon levels.

Methods: Radon exhalation rates from the soil were experimentally determined using the sealed-can method. Soil
moisture content was estimated using their wet and dry masses. Conventional correlation analysis was conducted to
assess the relationships between moisture content and radon parameters. Linear regression and random forest
machine learning models were applied to evaluate their predictive performance.

Results: Conventional correlation revealed a strong negative association between soil moisture and radon exhalation
(R=-0.82), and a weaker association with indoor radon (R=-0.30). The linear regression analysis showed limited
predictive capacity for moisture and radon exhalation rate, with a training correlation of 0.42, and a negative testing
coefficient of -16.0. The random forest showed higher values of 0.65 and -5.52 for the training correlation and testing
coefficient, respectively, indicating poor overfitting potential. Between moisture content and indoor radon, the linear
regression yielded a training correlation of 0.42 with a -2.17 testing coefficient, while the random forest returned
0.65 and -1.22, respectively.

Discussion: The results confirm that soil moisture influences radon exhalation. However, both models exhibited
weak predictive performanc and, poor generalization, highlighting the complexity of radon-moisture interactions.

Conclusion: This work re-emphasizes the need for improvement in predictive models, such as the use of non-linear
algorithms, consideration of additional environmental factors, and enhanced validation strategies to improve

accuracy in predictive correlation studies on radon.
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1. INTRODUCTION

The decay series of U-238 is the main origin of radon,
a naturally occurring radioactive noble gas found in all
rocks and soil. Radon, after its release from the soil, gets
distributed in an indoor environment through cracks and
fractures in building foundations (Tommasino, 2005).
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Since there has been sufficient proof that radon and its
progenies can cause lung cancer, the World Health
Organization (WHO) International Agency for Research on
Cancer (IARC) has classified radon as carcinogenic to
humans (WHO, 2024). According to the US Environmental
Protection Agency (USEPA), radon is the second most
common cause of lung cancer and the most prevalent
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cause of lung cancer in nonsmokers (USEPA, 2024). Soil is
the primary source of radon gas (Stoulos, 2024). The
emanation of radon gas from the soil is influenced by
many factors, such as soil grain sizes, soil moisture
content, soil porosity, soil permeability, and the radium
content. Among these, soil moisture content represents a
vital factor affecting radon exhalation from the soil into
outdoor environments (Sun, Guo, & Cheng, 2004). The
association between soil moisture and radon exhalation
has been investigated in prior studies. These studies often
rely on traditional statistical methods such as regression
analysis to quantify the strength of the relationships.
These methods tend to provide a comprehensive overview
of the relationship between these parameters, which could
be essential in the development of predictive models for
future radon studies (Yang, et al., 2019). However, new
trends in machine learning provide more improved
predictive models, such as linear regression and random
forest models, which leverage more complex algorithms
that can capture nonlinear relationships between the
parameters to help make better predictions (Igwebuike,
Ajayi, Okolie, Kanyerere, & Halihan, 2025). For example,
as a supervised machine learning algorithm, linear
regression typically learns from labeled datasets. It
associates the data points with the best linear functions
that may be utilized for prediction. Additionally, it uses
independent input parameters to predict continuous
output variables (Sarker, 2021). Random forest, on the
other hand, is built on decision trees for prediction
analysis and can handle larger data sets due to its
capability to work with many variables, giving it a more
competitive advantage than conventional regression
models (Ao, Li, Zhu, Ali, & Yang, 2019). To broaden the
knowledge of the association between soil moisture and
radon gas exhalation from the soil, the objective of this
research is to compare the performance of the random
forest and linear regression machine learning models
perform to the traditional statistical method based on the
experimental data reported by Asare, employed to analyze
the relationship between radon exhalation and soil
moisture (Asare, Otoo, Adukpo, & Opoku-Ntim, 2024). The
experimental data explored the correlation between soil
moisture content and radon exhalation using the

traditional statistical linear R’-coefficient. The soil
moisture content was estimated from the masses of the
dry and wet soil aggregates, and the surface radon
exhalation was experimentally measured using the sealed
can method (Asare, Otoo, Adukpo, & Opoku-Ntim, 2024).
Studies conducted have demonstrated the non-linearity of
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the relationship between soil moisture and radon
exhalation. For instance, at low moisture levels, water may
enhance the transport of radon through increased
capillary action, thereby improving radon emanation.
However, at higher moisture levels, water blocks soil
pores and reduces diffusion pathways, limiting radon
movement to soil surfaces. This results in a bell-shaped or
exponential response curve as reported by Griffiths and
Manohar (Griffiths, Zahorowski, Element, & Werczynski,
2010) (Manohar, Meijer, & Herber, 2013). As such,
modeling this relationship with linear methods may
oversimplify its complexity, thereby underscoring the need
for machine learning methods. This study thereby seeks to
evaluate the performance of different machine learning
methods as compared to conventional methods, to assess
the correlation between soil moisture, radon exhalation,
and indoor radon.

2. METHODOLOGY

2.1. Study Design

This study adopts an analytical and quantitative
observational approach to seek to answer the question:
How does soil moisture content influence radon exhalation
and indoor radon levels, and how do conventional
correlation methods compare with machine learning
models in predicting this relationship? The methodology
involves a quantitative approach, combining experimental
measurements and predictive modeling. It involved
measuring soil moisture, radon exhalation rates, and
indoor radon concentrations from fourteen (14) sampling
points. Soil moisture was determined by measuring the
mass of soil aggregates, radon exhalation rates were
estimated using the sealed can technique, and indoor
radon concentrations were assessed with CR-39 detectors
deployed at various sampling points. The alpha tracks
recorded on each detector were used to estimate the
radon activity concentration using the RadoSys Radometer
2000 System. The fourteen sampling locations, along with
their corresponding geographical coordinates, are listed in
Table 1. The data collected were analyzed using both
conventional statistical correlation, linear regression, and
random forest machine learning models. Data
preprocessing, model training, testing, and evaluation
were performed using Python and Scikit-learn libraries.
Independent variables included soil moisture, and
dependent variables were radon exhalation and indoor
radon levels. The performance of the models was assessed
using correlation coefficients and R® scores for training
and testing datasets.

Table 1. Sampling points and the geographical coordinates (Asare, Otoo, Adukpo, & Opoku-Ntim, 2024).

SAMPLE ID LATITUDE LONGITUDE
N2 5°40'41.09"N 0°13'14.09"W
A2 5°40'43.06"N 0°13'10.09"W
w1 5°40'42.07"N 0°13'7.03"W
K1 5°40'39.01"N 0°13'8.02"W
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Table 1) contd.....
SAMPLE ID LATITUDE LONGITUDE
Al 5°40'39.03"N 0°13'9.09"W
C1 5°40'40.06"N 0°13'10.03"W
R1 5°40'40.01"N 0°13'14.09"W
M1 5°40'41.06"N 0°13'16.02"W
R2 5°40'38.05”"N 0°13'14.07"W
Gl 5°40'34.07"N 0°13'7.02"W
Bl 5°40'33.03"N 0°13'3.01"W
S2 5°39'55.08"N 0°13'44.01"W
S1 5°40'01.03"N 0°13'44.06"W
N1 5°40'40.05"N 0°13'10.02"W

2.2. Inclusion and Exclusion Criteria

2.2.1. Inclusion Criteria

e Sampling locations must be within the designated study
area and accessible for both soil and indoor
measurements. Sites where soil samples could be
collected undisturbed for moisture content analysis and
sealed-can radon exhalation experiments.

e Rooms that were regularly occupied and suitable for
CR-39 detector deployment over the ninety-day sampling
period.

e Data sets with complete records of soil moisture, radon
exhalation, and indoor radon concentrations.

2.2.2. Exclusion Criteria

e Sampling locations with missing and incomplete
measurement records during the sampling period

e Sites that underwent environmental changes, like
flooding, could bias results.

e Rooms with unusual radon sources, such as proximity to
industrial facilities, that would confound the findings.

e Soil samples were compromised during collection,
handling, or laboratory procedures.

2.3. Machine Learning Method

To compare different machine learning models, the
data, as shown in Table 2, obtained from the soil moisture
content, indoor radon levels, and the radon exhalation
measured experimentally from the soil samples, were
imported into an Excel datasheet. The dataset was then
converted into a comma-separated value format to make it
more uniform and optimized for processing. It was then
exported to the GitHub platform for easy access. The
analysis and model comparisons for this study were
carried out using Python, as illustrated in Fig. (1) (Kim,
2024).

Table 2. Surface and mass exhalation rates, soil moisture content, and average indoor radon concentrations at
different sampling locations with a 95% confidence interval (Asare, Otoo, Adukpo, & Opoku-Ntim, 2024).

Sampling ID | Moisture Content | Surface Exhalation Rate, Bgm™h" | Mass Exhalation Average Indoor Radon Concentration, Bq/m®
Rate,
Bgkg'h™
N1 0.11 0.89 0.03 117 + 12
M1 0.09 0.74 0.03 98 + 12
Bl 0.09 0.86 0.03 115 £ 12
S1 0.09 0.7 0.02 103 + 12
G1 0.05 0.4 0.01 99 + 11
A2 0.15 0.32 0.01 89 + 12
R1 0.07 0.88 0.03 104 £ 10
S2 0.04 0.43 0.01 93 +10
w1 0.08 0.96 0.03 101 £ 11
K1 0.10 0.93 0.03 108 = 10
C1 0.11 0.81 0.03 112 + 12
N2 0.10 0.59 0.02 111 £ 11
R2 0.09 0.57 0.02 108 =11
Al 0.09 0.08 0.02 93 + 12
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Fig. (1). The various processes in the machine learning process from data preparation to the comparison of linear regression and random

forest models for this study.

2.4. Preparation of Data for Model Building

The data preparation process was conducted using the
pandas Python library. The dataset was imported directly
from using the pd.read csv() function, as demonstrated by
the code snippet import pandas as pd; df =
pd.read _csv(‘https://raw.githubser/kdk.csv’); df.

Subsequently, the data were partitioned into
dependent (y) and independent (x) variables. The ‘logS’
column was designated as the dependent variable (y),
extracted using y= df(‘logS’); y. The remaining columns
were assigned as independent variables (x) by dropping
the ‘logS’ column using x=df.drop(‘logS’, axis=1); x.

2.5. Splitting the Data into Training and Testing
Datasets

The train test split function from the scikit-learn
library was then used to split the prepared data into
training and testing datasets (from
sklearn.model selection import train_test split). This
function divided the independent (x) and dependent(y)
variables into training and testing sets. A 20% test size
was designated (test _size=0.2), which means 80% of the
data was allocated for training and 20% for testing. A
random state of 100 (random_state=100) was established
with the objective of ensuring the data split's
reproducibility. The resulting datasets were assigned to
X_train, x_test, y train, and y test.

2.6. Building a Model with Linear Regression

To determine the relationship between the
independent variables (x train) and the dependent
variable (y train), a linear regression model was built. This
was achieved using the LinearRegression class from the
scikit-learn library, imported from the code from
sklearn.linear_model import LinearRegression. A model
instance was constructed and allocated to the variable Ir
(Ir= LinearRegression()). The fit method was then used to
train the model, which laid out the association between
the features (x train) and the target variable (y train)
(Ir.fit(x_train, y train)). The model is designed to make
predictions on previously unseen data through this
training approach.

2.7. Applying the Model to Make a Prediction

Following training, predictions were carried out using
the linear regression model on both the training and
testing datasets. Predictions on the training data (x_train)
were generated using the predict method and stored in
y Ir train_pred (y Ir train pred= Ir.predict(x_train)).
Similarly, predictions on the unseen testing data (x_test)
were generated and stored in y Ir test pred
(y_Ir test pred= Ir.predict(x_test)). These predicted values
were then used to evaluate the model’s performance.

2.8. Evaluating the Performance of the Models

The R-squared score and mean squared error were
used to assess the model's performance, both of which
were provided by scikit-learn.metrics module (from
sklearn.metrics import mean_squared _error, r2_score).
The percentage of variance in the dependent variable that
can be predicted from the independent variables is
represented by the mean square error, which is computed
using mean squared error and quantifies the R* score.
The metrics were computed for both the training and
testing sets. Specifically, rf train mse and rf train r2
represent the mean square error and R® score for the
training data, rf test r2 represents the mean square error
and R’ score for the testing data, calculated using y test
and y rf test pred. Similarly, rf test mse and rf test r2
represent the mean square error and R® score for the
testing data, calculated using y test and y rf test pred.
These metrics offer a thorough evaluation of the predicted
accuracy of the model and goodness of fit.

3. RESULTS AND DISCUSSION
3.1. Moisture Content and Surface Exhalation

3.1.1. Linear Regression Model

Applying the linear regression model, the metric
obtained from the evaluation of the performance of the
model is illustrated in Table 3. The metrics showed
important facets of the linear regression model's
performance. The very low training mean square error
indicates a strong fit to the training data, with minimal
average squared difference between actual and predicted
values (Pandey, Singh, Khatri, & Verma, 2022). However,
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the R? of 0.42 for the training data implies that the model
clarifies only approximately 42% of the variance in the
Surface exhalation within the training set, indicating a
moderate fit.

Table 3. Moisture content and radon exhalation rate
correlation coefficients derived from machine
learning and experimental models.

Method Correlation Co-efficient
Experimental 0.82
Linear Regression Model 0.42
Random Forest Model 0.75

3.1.2. Linear Regression Model Comparison with
Experimental Results

A single-factor ANOVA was used to test for the
significance of the findings, and a p-value of less than 0.05
indicated that the differences between the experimentally
determined mean moisture content and radon exhalation
rates were significant (Liza, et al., 2025). The correlation
analysis performed on the experimental data yielded a
Pearson coefficient value of -0.82, which indicated a
significant inverse relationship between the accompanying
surface exhalation and the experimental moisture data as
shown in Fig. (2). To wvalidate this experimental
correlation, a machine learning linear model was
performed on the surface exhalation and moisture content
data, which yielded a correlation co-efficient of 0.42 and
-16.0 for training and testing linear regression coefficient
respectively. Although the model yielded a positive
correlation, the discrepancy between the experimental
correlation and the machine learning-derived correlation

Moisture and Surface Exhalation rate
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suggests observed potential inconsistencies in its model
performance. This may be due to data sparsity, overfitting,
or the inadequate feature selection process. Further
analysis of non-linear relationships using more complex
models, such as Random Forest regression,ould be
explored to enhance predictive accuracy (Ying, 2019).

3.1.3. Random Forest Model

To address the linear model incompatibility with the
data, an alternative ensemble model, like the Random
Forest, was explored. The results for the random forest
model present a similar pattern, but with some
differences. The zero training mean square error indicates
a perfect match to the training data. The training R-
squared of 0.74 further supports that the model explains
approximately 74.9% of the variance in the training data.
However, this perfect training performance is juxtaposed
with a concerning test R® of -5.52. As with the linear
regression model, a negative test R indicates that the
Random Forest model performs substantially worse than a
simple baseline model that predicts the mean of the
surface exhalation. This strongly suggests overfitting,
where the model is unable to generalize to new input since
it has committed the training data to memory. A very small
test mean-square error coupled with a negative R* further
indicates poor predictive performance (Alexander,
Tropsha, & Winkler, 2015). The combination of perfect
training performance and poor test performance
reinforces the diagnosis of severe overfitting, further
suggesting that the model in its current state is capturing
noise specific to the training set rather than the
underlying relationship between the surface exhalation
and moisture content.

R2=0.8168
y = -0.0076x + 0.0014

2

0.1 0.15 0.2

Moisture Content

Fig. (2). A graph displaying the Pearson coefficient for radon exhalation rates and moisture content (Asare, Otoo, Adukpo, & Opoku-Ntim,

2024).
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3.1.4. Random Forest Model Comparison with
Experimental Results

To further assess the association between radon
exhalation and moisture content, the random forest
regression model was employed. The model yielded a
training and testing correlation coefficient of 0.75 and
-5.52, respectively, as shown in Table 2. Given the
comparatively high training correlation coefficient, it
appears that the model successfully identified patterns in
the data relative to the linear regression model. This
relatively high correlation coefficient of 0.75 can be
compared to the experimental Pearson correlation
coefficient of 0.82, indicating better model performance.
However, the large negative testing coefficient indicates
severe overfitting, which could be a result of the model
failing to generalize to unseen or insufficient data.

3.2. Moisture Content and Indoor Radon

3.2.1. Linear Regression

The model's predictions on the training data exhibit a
moderate degree of error, as indicated by a training mean
square error of 34.64. This indicates that the model's
predictions deviate from the actual values by an
approximate mean of the square root of 34.64 units. The
training R-squared of 0.42 implies that the model
illustrates roughly 42% of the variance in indoor radon
levels based on moisture content. This indicates a
moderate fit, implying that moisture content alone does

Moisture content and indoor radon levels
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not fully explain the variations in indoor radon.

3.2.2. Linear Regression Model Comparison with
Experimental Results

To determine the significance of the data, a single-
factor ANOVA was used to analyze the differences
between the mean indoor radon and moisture content
obtained from this work. The results indicated a
statistically significant result, indicating a p-value below
0.05. From the experimental work, a weak negative
correlation coefficient of -0.3 was estimated as shown in
Fig. (3) between the moisture content and its associated
indoor radon levels, suggesting a weaker inverse
relationship exists between them, as moisture content
alone may not be a strong predictor of indoor radon
concentrations, implying that other environmental factors
could also influence indoor radon behavior. To evaluate
the performance of the machine-learning linear and
random forest models in predicting the correlation
between the indoor radon and moisture content data, the
models were effectively applied. A linear regression model
applied to the dataset yielded a training correlation co-
efficient of 0.42 and testing correlation coefficient of -2.18,
indicating a better performance of the model, however,
the negative testing coefficient implied that the model
failed to generalize to unseen data which may be due to
overfitting and the model may not capture the complexity
of the data due to non-linearity in the datasets (Aliferis &
Simon, 2024).

y =-186.52x + 120.09
R2=10.3043

0.1 0.15

Moisture content in soils

Fig. (3). A graph displaying the Pearson coefficient for indoor radon levels and moisture content (Asare, Otoo, Adukpo, & Opoku-Ntim,

2024)
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3.2.3. Random Forest Model

The random forest offers a similar narrative to the
linear regression model. The training mean square error of
20.87 indicates a moderate level of error on the training
data, suggesting the actual values in the training set and
the model's predictions are quite comparable. According
to the training R-squared of 0.65, the model accounts for
roughly 65% of the variation in indoor radon levels based
on moisture content within the training data. This
represents a better fit to the training data compared to the
linear regression model.

3.2.4. Random Forest Model Comparison with
Experimental Results

To assess the behavior and performance of alternative
models, the random forest model was employed. From
Table 4, the model produced a training correlation
coefficient of 0.65 and a testing correlation coefficient of
-1.22, suggesting moderate training accuracy relative to
the experimental Pearson’s coefficient. However, the
negative testing coefficient indicates a weak
generalization to new data, which may be caused by
overfitting and a limited dataset for the model to
recognize patterns.

Table 4. Correlation coefficients of moisture content
and indoor radon from experimental and machine
learning models.

Method Correlation Co-efficient
Experimental 0.30
Linear Regression Model 0.42
Random Forest Model 0.65

3.3. Limitations of the Applied Machine-learning
Models

Both models show observable limitations that could
influence their predictive performance. For instance, the
applied linear regression model overestimates a direct
correlation between the moisture content and radon
exhalation, which results in oversimplifying the complex
non-linear processes involved in radon emanation
influenced by many environmental factors and soil
parameters. This oversimplification, along with the limited
set where moisture content is the sole predictor, can
result in poor model performance, as evidenced by the low
training correlation of 0.42 and the high negative testing
coefficient of -16.0. Similarly, the random forest model,
while performing better on the training data, still suffers
from overfitting as indicated by its testing coefficient of
-1.22. This discrepancy suggests that the model may be
capturing noise rather than the underlying signal, which
may be due to the small nature of the dataset. Moreover,
the cross-validation in the model evaluation further
undermines the reliability of the performance metrics,
raising concerns about the robustness of these approaches
to new data (Varoquaux, 2018).

CONCLUSION

The experimental Pearson correlation analysis
indicated a strong negative correlation between soil
moisture and radon exhalation, suggesting an inverse
relationship. However, both machine learning models
exhibited poor generalization performance, with negative
testing correlation coefficients indicating overfitting. For
indoor radon, a weak negative experimental correlation
was observed, and machine learning models similarly
failed to produce reliable predictions. These findings
highlight the limitations of current applied models and
suggest that incorporating additional predictive variables,
applying non-linear modeling approaches, and adopting
more rigorous validation strategies may be necessary to
improve predictive accuracy in studies examining
environmental factors that affect radon levels.
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